

Date Planned ://	Daily Tutorial Sheet-7	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level-2	Exact Duration :		

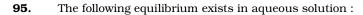
Dale Flaillea//					Daily fololidi Sileei-7			Expected Dutation . 70 Min				
Actual Date of Attempt : / /					Level-2			Exact Duration :				
86.	In a mixture of acetic acid and sodium acetate the ratio of concentration of the salt to the acid is increased ten times. Then, the pH of the solution:											
	(A) increases by one					(B)	decreases by	one				
	(C)	decreases ter	n fold			(D)	increased ten	fold				
87.	Relation between hydrolysis constant and dissociation constant are given. Which is the correct formula											
	for MgCl ₂ ?											
	(A)	$K_{h} = \frac{K_{w}}{K_{a}}$	(B)	$K_h = \frac{1}{2}$	$\frac{{ m K^2}_{ m w}}{{ m K}_{ m b}}$	(C)	$K_{h} = \frac{K_{w}}{K_{a} \times K_{b}}$	(D)	$K_{\rm w} = \frac{K_{\rm h}}{K_{\rm b}}$			
88.	Out	Out of the following, amphiprotic species are :										
	I.	$\mathrm{H_2PO}_2^-$		II.	HPO_3^{2-}		III.	HCO	- 3	Ü		
	IV.	$\mathrm{CH_3CO}_2^-$		v.	HPO_4^{2-}							
	(A)	I, II, III, IV	(B)	I, V	•	(C)	III and V	(D)	II, III, V			
	(A) (B) (C) (D)	Statement-1 (B) Statement-1 is True, Statement-2 is True and Statement-2 is NOT a correct explanation for Statement-1 (C) Statement-1 is True, Statement-2 is False										
90.	HX is a weak acid ($K_a = 10^{-5}$). It forms a salt NaX 0.1 M on reacting with caustic soda. The degree of											
	hydrolysis of NaX is :											
	(A)	0.01	(B)	0.0001	L	(C)	0.1	(D)	0.5	(\mathbf{E})		
91.	The degree of hydrolysis in hydrolytic equilibrium $A^- + H_2O \Longrightarrow HA + OH^-$ at salt concentration of											
	0.001 M is: $(K_a = 1 \times 10^{-5})$											
	(A)	1×10^{-3}	(B)	1×10 ⁻	4	(C)	$5\!\times\!10^{-4}$	(D)	1×10^{-6}			
92.	The pK_b value of NH_3 is 5. Calculate the pH of the buffer solution, 1 L of which contains 0.01 M NH_4C											
	and 0.10 M NH ₄ OH:											
	(A)	4	(B)	6		(C)	8	(D)	10	•		
93.		h of the followin			e ionisati		acetic acid in aqu		ution?			
	(A)	NaCl	(B)	HCl		(C)	KCl	(D)	Unpredictable	e		

 H_2O

(B)

(A)

NaOH


(C)

 NH_4Cl

(D)

NaCl

(

$$CH_3COOH \rightleftharpoons H^+ + CH_3COO^-$$

If dilute HCl is added:

- **(A)** The equilibrium constant will increase
- **(B)** The equilibrium constant will decrease
- **(C)** Acetate ion concentration will increase
- **(D)** Acetate ion concentration will decrease